首页 > 留学知识库

问题: 数学题,

已知锐角三角形ABC中,sin(A+B)=3/5,sin(A-B)=1/5,
1.求证tanA=2tanB
2.设AB=3,求AB边上的高.

解答:

sin(A+B)=sinAcosB+cosAsinB=3/5 (1)
sin(A-B)=sinAcosB-cosAsinB=1/5(2)
(1)+(2),得sinAcosB=2/5 (3),
(1)-(2),得cosAsinB=1/5 (4)
(3)/(4)得 tanA=2tanB


高为CD,tanA=AD/CD,tanB=BD/CD
故AD=2BD,又AD+BD=AB=3
故BD=1
设高为h,则AC平方=4+h平方,BC平方=1+h平方
由sin(A+B)=3/5,且三角形为锐角三角形,
故cosC=3/5
由cosC的余弦定理得,h=2+根号6