首页 > 留学知识库

问题: 很好的三角函数练习题(9)

求证
tana(1+sin2a+cos2a) =1+sin2a -cos2a

解答:

证明:左边=tana(sina^2+cos^2+2sinacosa+cosa^2-sina^2)
=tana(2cosa^2+2sinacosa)
=tana*2cosa(cosa+sina)
=2sina(cosa+sina)
=sin2a+2sina^2
=sin2a+1-(cosa^2-sina^2)
=sin2a+1-cos2a=右边
因此:原式成立.