首页 > 留学知识库

问题: 不等式

x>=0,y>=0,证明1/2(x+y)^2+1/4(x+y)>=x根号y+y根号x

解答:

1.显然有:√(1+x)≤1+x/2,-1≤x.

2.设x=1/4+u,y=1/4+v,u,v≥-1/4
==>
A=x√y+y√x=(1/4+u)√(1/4+v)+(1/4+v)√(1/4+u)≤
≤(1/4+u)(1/2+v)+(1/4+v)(1/2+u)=
=1/4+3/4(u+v)+2uv=B
C=1/2(x+y)^2+1/4(x+y)=
=1/2(1/2+u+v)^2+1/4(1/2+u+v)=
=1/4+3/4(u+v)+1/2(u+v)^2
==>
C-B=1/2(u+v)^2-2uv=1/2(u-v)^2≥0
==>
C=1/2(x+y)^2+1/4(x+y)≥B≥A=x√y+y√x.