问题: 不等式
x>=0,y>=0,证明1/2(x+y)^2+1/4(x+y)>=x根号y+y根号x
解答:
1.显然有:√(1+x)≤1+x/2,-1≤x.
2.设x=1/4+u,y=1/4+v,u,v≥-1/4
==>
A=x√y+y√x=(1/4+u)√(1/4+v)+(1/4+v)√(1/4+u)≤
≤(1/4+u)(1/2+v)+(1/4+v)(1/2+u)=
=1/4+3/4(u+v)+2uv=B
C=1/2(x+y)^2+1/4(x+y)=
=1/2(1/2+u+v)^2+1/4(1/2+u+v)=
=1/4+3/4(u+v)+1/2(u+v)^2
==>
C-B=1/2(u+v)^2-2uv=1/2(u-v)^2≥0
==>
C=1/2(x+y)^2+1/4(x+y)≥B≥A=x√y+y√x.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。