问题: 求证
已知在△ABC中,∠B=2∠C,a,b,c分别为∠A,∠B,∠C的对边,求证:b2-c2=ac
解答:
证:B=2C
--->B-C=C
--->sin(B-C)=sinC 两边同乘sin(B+C)得sin(B+C)sin(B-C)=sin(B+C)sinC 正弦函数的二倍角公式得
--->2sin[(B+C)/2]cos[(B+C)/2]*2sin[(B-C)/2]sin[(B-C)/2]
=sin(B+C)sinC
--->2sin[(B+C)/2]cos[(B-C)/2]*2cos[(B+C)/2]sin[(B-C)/2]
=sin(B+C)sinC 积化和差得
--->(sinB+sinC)(sinB-sinC)=sinAsinC
--->(sinB)^2-(sinC)^2=sinAsinC
--->(2RsinB)^2-(2RsinC)^2=2RsinA*2RsinC 正弦定理
--->a^2-b^2=ac.证完
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。