问题: 三角形
在△ABC中,若(A-C*cosB)sinB=(B-C*cosA)*sinA,则这个三角形是
解答:
sinC=sin(A+B)所以原式可以化简为:
2*sin[(A+B)/2]*cos[(A+B)/2]*2*cos[(A+B)/2]*cos[(A-B)/2] = 2*sin[(A+B)/2]*cos[(A-B)/2]
=>cos[(A+B)/2]*cos[(A+B)/2]=1/2
=>sin(C/2)*sin(C/2)=1/2
=>C/2=45(度)
=>C=90(度)
所以是钝角三角形
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。