首页 > 留学知识库

问题: 代数式最小值

x,y为实数,求u=x2+xy+y2-x-2y+3的最小值

解答:

x2+xy+y2-x-2y+3-u=0
x^2+(y-1)x+(y-1)^2+2-u=0
x有解
===>判别式≥0
===>(y-1)^2 -4[(y-1)^2+2-u]≥0
====>4(u-2)≥3(y-1)^2
因为3(y-1)^2≥0
===>4(u-2)≥0
===>u≥2
此时,y=1
x=0