问题: 高手请进!!!
已知奇函数f(x)满足:
1 存在常数P>0 使f(P)=1
2 当f(x1),f(x2),f(x1-x2)都有意义,且f(x1)不等于f(x2)时,f(x1-x2)=[f(x1)f(x2)+1]/[f(x2)-f(x1)]
求1 f(2P)
2 f(x)有意义,求证:一定存在常数T>0,使f(x+T)=f(x)
请详解,谢谢各位!
解答:
1. ∵ f(p)=1,f(-p)=f(p-2p)=[f(p)f(2p)+1]/[f(2p)-f(p)]=[f(2p)+1]/[f(2p)-1], f(x)是奇函数,∴ f(-p)=-f(p)=-1, ∴ f(2p)+1=1-f(2p), ∴ f(2p)=0.
2. f(x)=f[(x+2p)-2p]=[f(x+2p)f(2p)+1]/[f(2p)-f(x+2p)]=-1/f(x+2p), ∴ f(x+2p)=-1/f(x)…(*).f(x)是奇函数,f(x+2p)=-f(-x+2p)=f(x-2p), ∴ f(x)=f[(x+2p)-2p]=f[(x+2p)+2p]=f(x+4p).
∴ 一定存在常数T=4p>0,使f(x+T)=f(x).
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。