问题: 求对数的值
㏒2 cosπ/9+ ㏒2 cos2π/9+ ㏒2 cos4π/9 =
( 对数的底为2 )
解答:
㏒2 cosπ/9+ ㏒2 cos2π/9+ ㏒2 cos4π/9
=㏒2(cosπ/9)(cos2π/9)(cos4π/9)
=㏒2[(sinπ/9)(cosπ/9)(cos2π/9)(cos4π/9)/(sinπ/9)]
=㏒2[(sin2π/9)(cos2π/9)(cos4π/9)/2(sinπ/9)]
=㏒2[(sin4π/9)(cos4π/9)/4(sinπ/9)]
=㏒2[(sin8π/9)/8(sinπ/9)]
=㏒2(1/8)
=-3
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。