问题: [(x y)/(x-y) 4xy/(y^2-x^2)]/[(x^2 2xy-3y^2)/(x^2-9y^2)]其中3x^2 xy-2y^2=0
[(x+y)/(x-y)+4xy/(y^2-x^2)]/[(x^2+2xy-3y^2)/(x^2-9y^2)]其中3x^2+xy-2y^2=0
解答:
分子:(x+y)/(x-y)+4xy/(y^2-x^2)
=-(x+y)/(y-x)+4xy/(y^2-x^2)
=-(x+y)(y+x)/(y^2-x^2)+4xy/(y^2-x^2)
=-[(x^2+2xy+y^2-4xy)/(y^2-x^2)]
=-(y-x)^2/(y^2-x^2)
=-(y-x)/(y+x)
=(x-y)/(x+y)
分母:(x^2+2xy-3y^2)/(x^2-9y^2)
=(x+3y)(x-y)/(x+3y)(x-3y)
=(x-y)/(x-3y)
然后分子/分母得(x-3y)/(x+y) ---------------------------表达式(1)
由3x^2+xy-2y^2=0得出[x-(2/3)y](x+y)=0
得[x-(2/3)y]=0(即x=(2/3)y)或(x+y)=0
根据原表达式可知(x+y)≠0,所以取x=(2/3)y
代入:
x=(2/3)y ,表达式(1)等于 -7/5
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。