问题: 若正数a,b满足ab=a+b+3,求a+b的取值范围
答案要过程哦
解答:
解答:
因为a+b>=2(根ab),所以
ab>=2(根ab)+3,
令t=根ab,则:t^2>=2t+3→t^2-2t-3>=0,
解得t>=3,所以ab>=9。
即ab的取值范围是[9,+无穷大).
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。