首页 > 留学知识库

问题: 数学问题~

已知x>=0,y>=0,求证0.5(X+Y)^2+0.25(X+Y)>=X*Y^1/2+Y*X^1/2

解答:

求证:(1/2)(X+Y)^2+(1/4)(X+Y)≥X*√Y+Y*√X

1.
X*√Y+Y*√X=√[Y*X][√Y+√X]≤
≤[(X+Y)/2]√[2(X+Y)].

2.
(1/2)(X+Y)^2+(1/4)(X+Y)-[(X+Y)/2]√[2(X+Y)]=
=[(X+Y)/2]{(X+Y)-√[2(X+Y)]+1/2}=
=[(X+Y)/2][√(X+Y)-√(1/2)]^2≥0
==>

3.
(1/2)(X+Y)^2+(1/4)(X+Y)≥
≥[(X+Y)/2]√[2(X+Y)]≥
≥X*√Y+Y*√X.