问题: 数学问题~
已知x>=0,y>=0,求证0.5(X+Y)^2+0.25(X+Y)>=X*Y^1/2+Y*X^1/2
解答:
求证:(1/2)(X+Y)^2+(1/4)(X+Y)≥X*√Y+Y*√X
1.
X*√Y+Y*√X=√[Y*X][√Y+√X]≤
≤[(X+Y)/2]√[2(X+Y)].
2.
(1/2)(X+Y)^2+(1/4)(X+Y)-[(X+Y)/2]√[2(X+Y)]=
=[(X+Y)/2]{(X+Y)-√[2(X+Y)]+1/2}=
=[(X+Y)/2][√(X+Y)-√(1/2)]^2≥0
==>
3.
(1/2)(X+Y)^2+(1/4)(X+Y)≥
≥[(X+Y)/2]√[2(X+Y)]≥
≥X*√Y+Y*√X.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。