首页 > 留学知识库

问题: 证明

证明:若f(x)=x2+ax+b,则f[(x1+x2)/2] ≤[f(x1)+f(x2)]/2

解答:

f[(x1+x2)/2]
=[(x1+x2)/2]^2+a[(x1+x2)/2]+b
=(x1^2+x2^2)/4+x1x2/2+a(x1+x2)/2+b
[f(x1)+f(x2)]/2
=[x1^2+ax1+b+x2^2+ax2+b]/2
=(x1^2+x2^2)/2+a(x1+x2)/2+b
f[(x1+x2)/2]-[f(x1)+f(x2)]/2
=x1x2/2-[(x1^2+x2^2)/4]
=-[(x1+x2)/2]^2≤0
则f[(x1+x2)/2] ≤[f(x1)+f(x2)]/2