首页 > 留学知识库

问题: 高一数学3

解答:

根据正弦定理设
a=ksinA b=ksinB,c=ksinC
原式可化为:求证
(sinA/sinB) -(sinB/sinA) =sinC[(cosB/sinB)-(cosA/sinA)
左边
=(sin^A -sin^B)/sinAsinB
右边
=sinC[sin(A-B)/sinBsinA)]
即,求证
sin^A -sin^B =sinCsin(A-B)
即sin^A -sin^B =sin(A+B)sin(A-B)

右边 sin(A+B)sin(A-B)=(sinAcosB)^-(cosAsinB)^
=sin^A(1-sin^B)-sin^B(1-sin^A)
=sin^A -sin^B
=左边