问题: 数学
a^2+b^2=1,c^2+d^2=4,求ac+bd的最小值
解答:
完了吧 你们倒是搜阿 这样的题还能解决不?
设a=sinx,b=cosx,c=siny,d=cosy
所以abcd=sinxcosxsinycosy=[(1/2)sin2x][(1/2)sin2y]
所以取适当的x,y可使abcd取最小值-1/4.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。