首页 > 留学知识库

问题: 极限

已知等差数列前三项是2,4,6,前n项和为Sn,Sk=2550,k=50 求

解答:

Sk=2k+k(k-1)×2/2=2550
k^+k-2550=0
k=50
Sn=2n+n(n-1)=n^+n=n(n+1)
1/Sn=1/n(n+1)=1/n-1/(n+1)
∴1/S1+1/S2+1/S3+1/S4+.......+1/Sn
=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+....+[1/n-/1(n+1)]
=1-1/(n+1)
n→+∞
1-1/(n+1)→1