问题: 高1数学题7
(1+sinθ+cosθ)/(1+sinθ-cosθ)=1/2
求cos2θ
解答:
解:∵tan(θ/2)=[sin(θ/2)]/[cos(θ/2)]
=[2cos(θ/2)]sin(θ/2)]/[2cos(θ/2)cos(θ/2)]
=(sinθ)/(1+cosθ),
tan(θ/2)=[sin(θ/2)]/[cos(θ/2)]
=[2sin(θ/2)sin(θ/2)]/[2sin(θ/2)cos(θ/2)]
=(1-cosθ)/(sinθ),
∴tan(θ/2)=(sinθ)/(1+cosθ)=(1-cosθ)/(sinθ)
=(1+sinθ-cosθ)/(1+cosθ+sinθ),(比例的等比性质)
=2.
∴tanθ=[2tan(θ/2)]/{1-[tan(θ/2)]^2}=(2×2)/(1-2^2)=-4/3.
∴cos2θ=[1-(tanθ)^2]/[1+(tanθ)^2]=[1-(-4/3)^2]/[1+(-4/3)^2]
=-7/25.
版权及免责声明
1、欢迎转载本网原创文章,转载敬请注明出处:侨谊留学(www.goesnet.org);
2、本网转载媒体稿件旨在传播更多有益信息,并不代表同意该观点,本网不承担稿件侵权行为的连带责任;
3、在本网博客/论坛发表言论者,文责自负。